TONARD EFFICIENT lﬂPLEﬂElTﬂTIONS OF PCCG

(PRECONDITIONED CONJUGATE GRADIE. . <U) PITTSBURBH UNIYV
T FOR_COMPUTATIONAL MATHENATICS AND

UNCLASSIFIED R HELHEH O0CT 86 ICMR-86-101 B 12/1 NL

AD-R173 738

4 By .J.J.M*A...i. ..l\.r\) ~‘_r«/.... - P \{N -)
NSNS ..&fl\\\% I .
et Ao ...-e..u.-rv X

N
)

gl
EEEE

off of of - a3
S EEEFTETN

2l =

16

|
Il

l

1.4

125

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

»
.

x
7

N

B N R R N T I R R L L IS WAL JRT Wy S P

b AR WL LWL W, £A Nk dnaie 1 ‘aliva et e FU St R AN iy Fy MT R TAT P A o Rt ‘b Aato et 4,0 0,0 B B R R A A I W R RO T)
b
i
. |
o /
‘I‘
j‘ﬁ
‘

3 =

3 Q INSTITUTE FOR COMPUTATIONAL

4 on MATHEMATICS AND APPLICATIONS

- N

?5 A\ Technical Report ICMA-86-101 October 1986 Y
<]
b, ! Toward Efficient Implementations of PCCG Methods E?TE
b Q *) ;.‘:::‘;1
A < on Vector Supercomputers :::-_\51
p Yol
: by i
' Rami Melhem ,‘?E:E;;
5 {
5 B2
4 Department of Mathematics and Statistics 0

o]

y . . . g N
: University of Pittsburgh [E?K,;

~n! J)
. NOV6 1996 i |

& o
ey :

od !

e
L 7 Pl

" ’
L B
4 E{ MY

W

Nl

”~

lﬂl
;’I

o

"
o
J$I

'?;’J
7%

h]

.i‘. .'. . l.

— T
T amoent 3 '\1\ W

Thic document has bcf..n x‘s.p,‘

lon=¢ and cae !

wriand

T

b for public ¢
‘ A ibabon A

AT FILE COPY

[y
‘{:ﬁ{‘o{\
5 AN

Pl

s

» 0 2 1
-‘. u" -'. o
A

SOV

L IR

3 A8 13 VI W

Y
A
B (s

s
oy
. .

0l ..t

ol)
P
e

- e pepean ettt ep e e .
NN R P S R A A AN SR

N I

ettt at s, at
\J'\J‘ LN .--.:...’_.(_‘. o

I I P N . RN
PSS OO -\-\f\-\ Wy Wt

r.2 N e, tamay e
-] -r\.' EAG

e W ¥,V v v
t 4P AP
I.'-\-f --\.f\-’ -f --

5 a0V 8 & s
fel AN AN

wvvf:a?w.

Ao B N)
-)F-\.x\. gt R ' .-\-.(..-n-h-
DN AR IR ek 1 X
.)(hv\),bﬂ*w. A -\.f.f : D N e Tl DR T .r-v
AL oLl f‘& W.L PO AT S, LA
%.(.)v\.b'?\nl.*-', P AR AP 3 1 M) [AFNVRL © 31 LR AR S

October 1986

*)
The experimental

by
Rami Melhem
The University of Pittsburgh
Pittsburgh, PA 15260

on Vector Supercomputers
Department of Computer Science
and

L]
O
o
£34
w
wd
5}
L]
o
]
9
=)
L
n
3
et
o
o
=}
o
et
o
o
b >
w
o
o
[
[
8
o
o]
<
.
9
Q

Toward Efficient Implementations of PCCG Methods

Technical Report ICMA-86-101
results were obtained on the CRAY X-MP of the Pittsburgh

Supercomputing Center.

*) This work is, in part supported under ON contract N0OO14-85-K-0339
and Air Force contract AFOSR-84-0131,

Mt Dt D S N B R gV e S ,‘.F_‘l'_:-?:..'
LA
. "-
S

TOWARD EFFICIENT IMPLEMENTATIONS OF PCCG METHODS

ON VECTOR SUPERCOMPUTERS‘)

. u)
Rami Melhem

Department of Computer Science
and

Department of Mathematics and Statisctics

-

af

The University of Pittsburgh.

\J
3

.
4,0y % v Ty

el L.

AN
b
‘l

“
¢'

L

ABSTRACT
T it s
-We consider-large, sparse linear systems which result from the discretization of par-

he houses
tial differential equations on regular and irregular domains, and we focus on the application

of the preconditioned conjugate gradient (PCCG) method to the solution of such systems.
More specifically. the goal of this paper is the efficient implementation of the PCCG method

on vector supercomputers. The contribution to the above goal is made by 1) the introduc-

"

%
~4

tion of a data structure which may be effectively manipulated on vector machines, 2) the

Ty
¢ ¢
N

utilization of preconditioning matrices which are obtained by incomplete factorization with

."‘.
y

diagonal update sets, and 3) the introduction of new numbering schemes for both regular

YK
”

/

o

and irregular grids.

!
5

AL
oS

LA

/
|
7’

5 B
o'

AN
I:!:I
P

Eran
P

*) This work is, in part, supported under ONR contract N00014-85-K-0339 and Air force contract
AFOSR-84-0131. The experimental results were obtained on the CRAY X-MP of the Pitisburgh Super-
computing Center.

**) On leave from the Department of Computer Science, Purdue University, West Lafavette, IN 47907

a0 "e
.'"":'-', LA
NI

wa
P4

fi

e % %
e

oy

R 4 Y
2,

e SN N I N NENF I AT VG ST ST R AE N RSN g S 2 AN N) NN S S IO
‘-M‘uﬁi\.n_ﬁ&u‘bmm&i' y v 4 v

55

- -

K> & 8L O

‘—II'J;“.

P o

: L ;'.A‘J' - "-'.-

LA

OO

AN LAN

-

PE TP

w4

- =

X

uth
o

1. INTRODUCTION :.r,:.f
e

. : NNy
Consider the linear system I 3y

Ax=b 1)

where A is a large n Xn symmetric, positive definite matrix. It is widely accepted that the
conjugate gradient method (CG) may compete with direct methods for the solution of (1)
only if the matrix A is suitably preconditioned. In other words, in order to speed up the
convergence of the CG iteration. it is essential to find a preconditioning matrix M = A, and
then apply the CG method to the solution of M~1 A x = M~} 5. The resulting precondi-
tioned CG method (PCCG) is described as follows:

ALG1 - PCCG:

Chose an initial guess x .

ro=b —Axy : ho=po=MT'r,
Repeat for i =0, - - - until convergence,
D = Srihi> fT L
<Ap;.p; > O
Vxip=x +a; pi: risei=r; —a; A p;

Dhig=M1r,

Al
0, = Snnhin> 3

<r,» .h,' >
5)pis1 =his + B; pi

Where, <x.,y > denotes the inner product of x and y. If the preconditioning matrix is

Y

v.' -
D

chosen such that M =U7 DU, for some upper triangular matrix U and some diagonal

’x

“p <
Y

matrix D . then it is possible to reduce the linear system Mh; ,,=r, ., in step 3 of ALG1 into

!.“h

h Y

two triangular systems. The solution of these systems is the price which is to be paid for

speeding up the convergence of the basic CG method (for which M =1).

Unfortunately, this price may be quite high when the PCCG is implemented on vector

supercomputers. More specifically. the solution of a triangular system is a recursive pro-

N N A N IR S A AT AN A NN AT A AT NI

.

ALY YLS

)

=

v ¥

N

N
(Y
L]
LR

NN

cess which may be very inefficient on vector and pipelined computers. In order to overcome
this difficulty, alternative preconditioners have been considered (see e.g. [1. 3, 16, 20, 23]).
Also, multicoloring techniques have been used to reorder the rows and columns of the
matrix such that to minimize the data dependencies, and thus minimize the effect of recur-
sion (see e.g. [9.17.21,22]). However, experimental results [9. 17, 22] show that mul-
ticolor orderings decrease the rate of convergence of the PCCG method. These results raise
the following challenge which was suggested by David Young and al [25]: "Can we find an
iterative algorithm which is substantially better on supercomputers than the basic CG

method?".

Numerical solution techniques of partial differential equations (PDE) are major
sources of large linear systems. In any of these systems, the coefficient matrix A is gen-
erated by the discretization of a PDE on a finite grid G such that each row of A
corresponds to a node in G. The specific discretization used defines a neighboring relation
between the nodes of G . For example, if finite element analysis is used. then two nodes are
neighbors if they belong to the same element. This neighboring relation determines the
sparsity structure of A. More specifically. an element a; ; of A is non-zero only if nodes i

and j are neighborsin G .

For rectangular domains covered by regular grids, the non-zero elements in A are
confined to few diagonals. In this case, good preconditioning matrices may be obtained by
the incomplete Cholesky factorization of A [7. 11, 12]. Namely a Cholesky factorization in
which only selected elements of A are modified during the factorization process. The posi-
tions of these selected elements are specified by an update set P. and the corresponding fac-
torization is denoted by IC(P). For example, if P = P, = {(i.j):a, , # O}. the set of posi-
tions which contain non-zeroes in A . then the corresponding Cholesky factorization,
IC(P,). does not allow any fill-ins in tne matrix A . The conjugate gradient method which
uses a preconditioned matrix obtained by an incomplete Cholesky factorization with update

set P is denoted by IC (P)/PCCG .

e e LS e, NN e, P S S S -
3 '."' ot A ". ,.‘:J',:’c' ‘.*)\.- \"'-." N V..

e ntm e tae.
\\\a NP N

p, o,
P

[

Iz

44,

o
LA RS

(N

¥ v
<,

N

“Syahy
LA XA
fﬁ&~ﬁ¢‘

XA A

I3

v

Te

hL

N AL
WX NN
ﬁﬁ%\ﬁﬁk

G

i

oy ,s;v;.';.',j

LY

.

'x/-’
o [N
RV

aln s

A
R A

)

i 3
)

Py
[

1]
s

e N

.
a

R
)

(WS
AN

"a‘
l.'. lrl.l . .
FACACR: XA

b
-
.

P)

RIS e~y =04 YA w e e RER T e R S

CI R Al 1 NMAFI I E AU A | B gl ble b 1 T2 gy

5

i

If. on the other hand, the matrix A is generated from irregular grids. then, its non-
zero elements are not confined to any regular pattern. In this case, a suitable precondition-

ing of (1) may be obtained by chosing M 1o be the SSOR matrix [8].

In order to obtain efficient implementations of the IC (P)/PCCG methods on super-
computers, advances have to be made in three fronts. 1) suitable data structures which are
efficiently manipulated on vector computers have to be chosen, 2) better preconditioning
matrices have to be used. 3) renumbering schemes have to be found which satisfy a balance
between the advantages of increasing the recursion span in step 3.3 of ALG1 and the disad-

vantages of slowing down the convergence of the PCCG method.

In this paper, we consider each of the above three fronts. More specifically, we
present in Section 2 a data structure which may be used efficiently for the manipulation of
general sparse matrices on vector computers. Then in Section 3. we examine the class of
preconditioning matrices obtained by incomplete Cholesky factorizations. By using the
notion of update sets rather than the fill-in sets, we show that the SSOR matrices are
incomplete factorization matrices with an empty update set. Also. the zero extension fac-
torizations /CCG (0) [13] and MICCG (0) [7] are special instances of an incomplete factori-
zation /C (P,) in which the update set is given by P, ={(i i):i=1..n). This IC(P,)
factorization is, in fact, general, and may be applied to matrices which are generated from

irregular grids.

In Section 4.1, column-wise multicolor schemes are introduced for rectangular grids.
and in Section 4.2, numbering schemes for pierced rectangular grids are described and their
effect on the vectorization potential of the PCCG method is analyzed. In Section 4.3, the
multicolor numbering schemes are generalized and applied to irregular grids. and finally. in

Section 5, we present some experimental results which have been obtained on the CRAY X-

MP vector computer.

A ‘I.:II
AN
VAR Y

b:f:a‘f
FLeY
S

’

'%?
N

a

.

ki
. “-
.

b
&

P s g
Y %

AN
'.. h ‘.

~VII{

1

DL

L4
l‘ 5
’ r]
Ve

<R

. 'l:_'-;.'h/

LA X
4 1
fl’l
&% Y

A At A A SR A DA S
I

In [14]. stripe data structures are introduced as a means to include all the non-zero
elements of a matrix in a structure which is suitable for parallel processing on linear com-
putational arrays. In this section, we will demonstrate that this same structure may be !

used effectively to process sparse matrices on pipelined and vector computers.

-4 - §’ ‘

e

35

2. THE STRIPE DATA STRUCTURE Yoo

5%
}: Very briefly, a stripe in an nXn matrix A is a set of positions S = _ :’:i
* DSt
::'_ {G.o(i)).ie!C1,), where I, ={1...n} and o is a strictly increasing function, that is if :1‘15
i (i.0(i))and (j.o(j)) arein S, then 74
Vo) .l. :
. e
' i <j ==> oG)<o(j) (1) A
S
e
\ .r.:.\"
i Note that a stripe need not include a position for every row of the matrix. If, however, it f"-ﬂ“‘-“
S
;s does contain a position for every row, then it is called a complete stripe. Two stripes. T‘: ‘\
-) >
‘;: $,={(.o4(i)} and S,={(i .o,(i))} are ordered by S; < S, if, for any (i.01(i))eS, and ;:;‘
?-. N
. (j.ox(j))eS, we have g
i "'-.:n.
) . . . o
"~ i €j ==> o,6)<oj) (2) o
"\l
o

Lt
hbes
P by) " ‘7

With this, a stripe structure of A is defined as a set of stripes, T4 = {Sd,,l. ce .S,,z}.

¢ 7
" ’x

ce: .. v .
N such that 1) S, < ‘- < S, and 2) the position (i.j) of any non-zero element g, ; of A :' 3%
e TS
. - LN
N is in some stripe S, . —7,; <k $<7,. The number of stripes w=m;+m,+1 is called the stripe :‘ﬁ:‘
et >
E count. In [14], an algorithm is given for the construction of stripe structures for sparse iy
s
. 3 - . - I3 . .~ ~
o) matrices, in general, and for finite element matrices. in particular [15]. ,.j-'_f}.
5 .o
2 A
;Q The elements of a striped matrix A may be stored in an n X7 array, AE. and the RSN
ﬂ‘ V)
Y position of each element may be specified in another n X array, AP . More specifically. we . ¥
E:' TN
X
N may set KR
~ e,
* ‘_-j\-'.‘
N a0,0) if (i Ke (i))e S; .;_\;‘
1 ; —4 . r._
F AE (i .k +offset) 0 otherwise (3.a) ;
& _f.}_:
N . o o
bf o, G) if .o, (i) €S, -‘.:.‘:
Qj AP (i k +offser) = n+1 otherwise (3.b) -:-_-:.»
g LS
":.': P:f\l
e NS
::.‘.(Y W, T o PR ‘. S N I A PR I R L AP I L P UL IL I P LV A R RSO o Id 'l;.,':.‘.‘:'
AN, SO S . 3 et s et e o Y A T N a2 M .

el Te W ¥abyd b g B0 g b aVEE Sl N SN I S N SR e e et o i N W ¢ e h et/ » a v AW WL Y . -"

” 0N
AN
: :‘__s:_: '
-5-_]
=

: -';}_.':
: RN
4 R

Tay 0 0 ™ai~a;s 0 0 0 0 O 0 0 ay ay, ag 1111 45 05

0 Cz_z\o ﬂz_’\o*o 0 0 0 0 a1 a3 11112 5 11 .:“ﬁm
o0 a,,\o 0\0 a3 0 0O 0 0 a;; 0 ayy 11113 118 X

a4 0 0 Qaq 0 Qag 0 0 ™a.e 0 0 a4 Q44 ag day 111 4 6 9 b
Nagy ‘s.z\g\ 0 Sass 0 ™ayy 0 0 a5, a5y dss asy 12571

PN G4q 0 “ags 0 TU~agq agu 0 age ags ag9 %60 114 6 9 10

0 0 0%a;5 0 Taz 0 O\ O 0 ajsay; 0 O 115 7 11

0o 0 "l-l\o oo o asa 0 ‘a3 g3 0 ag5 a3y O 3 118 1011

0 0 0™ae, 0 Mg 0 0 dgq O™ Ggq Q9g Qoo 4 6 9 N1

0 o o 106 U010 0 “ay @104 3108 310100 O 6 8 101111

~

{
vt
'y (a) The matrix (v) AE (c) AP
|
. Fig 1 - A stripe structure of a sparse matrix
g Here. offset =m;+1, and AP (i .k +offset)=n +1 is used to indicate that S, does not contain a '.’_-\.-j-f
o oS
j; position in row i. In Figure 1, we give an example which illustrates the concept of stripe NS

N L.
oy,
. S "
ﬁ data structures. Clearly, this stripe storage scheme is a generalization of the diagonal rﬂ"'
K,

g) . Wi,
:- scheme used in [25] and [10). It is also a more restricted form of the data structure used in :{.:{.
5 o
.‘;_ [19]). in which neither the strictly increasing property (1), nor the non-intersecting property ":j.
A N
i (2) holds. The former property is crucial for the efficient manipulation of symmetric Sy

By - g~
. R,
v matrices on vector computers, while the latter is only useful for the manipulation of sparse e
Ei (LAt

? matrices on linear computational networks [14]. NI
< P
. o

If A is a symmetric matrix with non-zero diagonal elements, then it is possible to con- '
N 'Q:.
V-.
~ struct a stripe structure £, ={S_, . .S, }. such that the lower stripes, §_, . k =1....7,, :-t:*‘:.
o BANLN
;'. are mirror images of the upper stripes, S, . kK =1....,7. In this case. only the elements in ',*::f'
- Rhaba
! So. - .Sy, need 10 be stored in AE and AP (with ofset =1 in equations (3)).
'*ﬂ'
:"'\- Given a symmetric matrix A in stripe storage form, the computation of the product

vector y =Ax . for any vector x, may be accomplished by the multiplication of each ele-

ment g, 4, (;) in an upper stripe §; with both x, and x4, (;). and then the accumulation of

AW D

N
:-: the results in y, (;) and y;. respectively. Using a pseudo CRAY-fortran language. the
N matrix/vector multiplication algorithm may be written as follows:

': ALG2 : Symmetric Matrix/Vector Multiplication

: Dx(n+1)=0

-1 IR,
v

s I Y

D YA T I
OLACA .

M I AT A R AT A ST AR AP RN LT AR PRI S N S N T T DL I S P P o TP I, |
O S CN T SN X PO L CRN AN O, COR VO L NN N

e "eTAaTEERIS T L,V "o s WERS W & ¥ I F .V AW (e"a T :"d""HEETE ¥V I YV VoTaT s R 2T eT T aT T v S FW OV VU L% ™ e s 3 s TR W W R R 8T -

- =
»

2)y(@)= AEG of set)* x (i) i=1l..n

3)DOk=1, - .m,
3.1) call gather(n .w .x .AP(1.k +offset))
32)yG@)=yG) + AEGi k +offset)* w(i) i=1...n
3.3)2(i) = AE(i &k +offset) * x (i) i=1,..n
3.)w()=0 i=1..n
3.5) call scatter(n .w AP (1,k +offset).z)

360)y@)=y@)+w(G)

i1=1,....n

Step 2 in ALG2 accumulates in y the contribution of Sy, steps 3.1 and 3.2 accumulate
the contribution of S, , and steps 3.3-3.6 accumulate the contribution of S_, . The strictly
increasing property (1) is essential for the correctness of the above algorithm because it
ensures that if {#j, then o, (i)#0,(j). If this is not satisfied, then z (o, (i)) and
2 (0, (j)) will be scattered to the same location in w, and thus only one of them will be

accumulated in y .

Besides matrix/vector multiplication, the stripe structure may be used in the solution
of triangular linear systems. For example, consider the upper triangular system
(D+U)x =b, where D is a diagonal matrix, and U is a strictly upper triangular matrix

with a stripe structure Ly = {S,.- - -.S,,}. The solution of this system is a recursive pro-

cess in which the calculation of x; proceeds in the order i =n1, with x; depending on the
previously calculated values x;. j >i. The minimum recursion span, that is the minimum
integer d such that x; does not depend on x;,; - ' .x;+4 . is equal to the upper zero stretch

of the matrix defined as follows:

Definition: The upper zero stretch of a matrix A is the largest integer A, such that a, , =0
for i =1,..n and i <j <i+4,. In other words. A, is the size of the maximum band above
(and including) the main diagonal which contains zero elements.

For the upper triangular matrix U. the upper zero stretch is found, by properties (1) and

(2). to be

..,,,_..K
PR)
,r:(:'/:'}:l. '.\.I .
VXA

1

A
C. S .

g

2

...
(/.'.I"v’

A :...l,s. .
v S

e “w “x ¥
v
RN

L
.

’

by

Yoy
XX
XK

N
{%
A

k

of -
o
(]

ol

[‘.: I..-.‘.-

el

5‘,\;‘:

LAaNh Y
Al
"-“;\‘:.'"
SRR

3]
»

Y

- g

NN

A, = max{ oy(i)—i ; (i.0y(i)) eSS, }

Given Iy and A, the triangular system (D +U)x =b may be solved using operations
on vectors of length A,. Similarly, given a strictly lower triangular matrix L and a stripe
structure £; ={S_, . - .S_,}. a lower triangular system of the form (L +D)x =b may be

solved using operations on vectors of length A;, where A, is the lower zero stretch of L

given by
A] = max{ i—O’_l(i) ; (i 'U—l(i)) € S-l }

When the IC/PCCG method is applied to symmetric matrices, it is necessary to solve
in each iteration two triangular systems of the forms (L +D)x =b and (D +U)y =x . with
L=UT. If Ly={S}. - .S, } is a stripe structure for U, then it is possible to construct a
stripe structure £; ={S_, .-+ -.S_;} for L such that each stripe S_ , 1Sk < is the mir-

ror image of S, . In this case, only U needs to be stored. Let UE and UP be the arrays used
to store U/ in a way analogous to equations (3) (with offset =0), and let A, be the lower

(upper) zero stretch of L (U).

The solution of (L +D)x =b is affected by the absence of an explicit storage for the
elements of L. More specifically, consider the usual forward substitution algorithm. In
this algorithm. the solution proceeds such that, after the computation of x,, - - X, 5, for
sorxe r . the next A; elements of x are computed by, first, computing the A; component z;,
i=rA;+1. - (r+1)4,. of the vector z=b—Lx, and then dividing each z; by d;. the i’
component of D. However, the above scheme is not efficient because it is difficult to access.
in UE, the elements of Z; which belong to rows r A, +1, - - - .(r +1)A;. In order to over-
come this difficulty. we use a column sweep algorithm (ji algorithm according to [5]).

More specifically. we let L; be the j* column of L and we compute the vector

n {r+1)A
z=b—Lx=b—} L,x, progressively by accumulating Y. L, x, into z as soon as the
=1 1=r 4 +1

appropriate values of x are computed. This requires the access of the elements of T; which

.‘...‘

o
r-ﬁ
1)

[
)
"
»

S
LA
(’.f"fv’ (PR

Yy v
(4

l'
J".

[4

-
~

'
s

-

..
oy,
-'

.

Ve g W 3, ' o « it ", o0t afiat aintobet agh il N ~
N Ny
:.::. ‘f"
-8 - .
AT
Y %)
el e
ﬂ belong to columns r A, +1, - - - ,(r +1)A, that is the elements of L, which belong to rows ¥
By ‘
i rA;+1. - (r +1)4,. These elements may be easily accessed in UE . Do

L N T
4 .
f%i

Y

More precisely. the solution of (L +D)x =b may be described by the following algo-

AT

Y
rithm, in which we assume, for simplicity, that n =A; m for some integer m: :,f o]
W Lk
N §
+ ALG3 : Forward Substitution L
) el
~ DzG)=56) i=l...n L
g o
Mo o
X Dx@)=236)/d@) i=1...4, N
> aas
B 3) FOR r =0.....m —1 DO —
~ING
N 3.0)Leti, =rA,+1andi, =(+1)A N
v i
N, 3.1) FOR k =1.....m, DO ot
4 PR
N LA
% 3D wGE)=UEG &)* x(i) i=i,, Lo N
.
by 312)u(i)=0 i=ig, o
‘n
39 3.1.3) call scatter(A, u UP (i k) (i,)
- 314)z2(G)=zG) —u@) I=t, 0 2
& RN
5 32)x)=20)/dG) i=i, 1, 0, +A, 5]
e e
. Ny
b 'r. 4::-.*\
. .ﬂ
Note that in 3.1.3, the A; elements of w may be scattered anywhere in u. For this £ 5
; L
8 reason the summation in 3.1.4 runs up to i =n. An alternative way for writing the inner
‘ NS
y loop in step 3.1 is as follows ‘.
7 "
3.1.1) call gather(A, u (i,).z (i,).UP(i; .k)) '\» '
-a 2
v 3120 u(@)=u(i)—UEG k) * x(i) i=ig, . i R
-7 .:\.:‘..
e 3.1.3) call scatter(4, .z (i,)J.UP (i, &k Ju (i,) j'-'}'.'
-~ “\
Clearly. this second alternative reduces the number of operations. Moreover, the subtrac- . !_;T
N
”, Ay
X tion and the multiplication are performed in the same step which allows for the chaining of TN
. ' .$-.‘v'~.
s
; the two operations. The choice between the two alternatives should depend on the relative ‘;\f:
(4 DAY
“ e
i execution time of the different vector instructions on the specific computer used. For exam-
]
_:: ple. actual measurements on the CRAY X-MP shows that the slow down due to the addi-
a Y
A
N tional call to "gather” in the second alternative more than offsets the gain obtained from the
*-‘
“
o

AR A AN AR AR EER CRE
)

A AR N SLSEAL LI - b

A LLOMRL TR A Sl Vel S S0, NS W el SR NI

chaining of the operations and the lower operation count.

T

3. INCOMPLETE FACTORIZATIONS WITH DIAGONAL UPDATE SETS

Given a symmetric positive definite matrix A of order n ., the incomplete factorization

o

of A is a splitting of the form

' A=M+R (4.2)
s where
M=U+U)Y D (I+U) (4.b)
oA
’ and / is the identity matrix, D is a diagonal matrix and U is a strictly upper triangular \x‘:
matrix. The matrices D and U are determined from A by applying a factorization pro- PEE
cedure in which only specific elements of A may be updated during the factorization. More e
specifically, if P={(i.j) :i.je€[1.n]} is any subset of positions in A , then the corresponding E‘.I
incomplete factors of A are obtained as follows: ;‘:
ALG4 : Incomplete Cholesky Factorization ' :
: FORi=1,---.n DO ’
A
dii=a;; :E:'::j

FOR j=i+1,---.n DO

P T T

u,«'j =a,-,j /di,i ‘;:::»l

. . ?:\':~

FOR j=i+1, --.n DO NI
’?u‘. »

FORk=j, --.n DO

IF(jk)eP THENa,, =a,; —u,,

* U x * dl K
We call P the update set and we call the corresponding factorization (4.b) and split-
ting (4.a) the IC (P) factorization and splitting of A, respectively. A possible choice of P

is the set P, = {(i .j): a; , # O} of positions which contain non-zero elements in A .

Manteuffel [11] suggested a shifted incomplete Cholesky splitting (S/C) in which the
off diagonal elements of of A are scaled by some factor w before the factorization. In order

10 be more specific, let /' and A be the upper triangular and the diagonal parts of A4, -:::-:'.;-

p
s
,

o
3 X .-\.-_::
‘: -10 - Laslas]
K
p respectively. That is
&
i A=FT +A+F (s)
By With this, consider the shifted matrix
2 A=A+w(FT +F)
1 and let U and D be the factors produced by the application of ALG4 10 A. The SIC (P .w) ‘\i g
N DA
: splitting of A . corresponding to the update set P and the shift factor w, is then given by -;\ a
o = .r"‘:-\
X “WTATS

°y
'I

K
[

- A= +UY DU +U)+R

S W
PAE o)
g

Note that SIC (P .w) reduces to IC(P) for w=1.

<
I...’.'

L] \;

A%
)
<
4 %

Factorizations with update sets larger than, or equal to. P, have been considered in the

s

o
.‘J“’ P4
i

N

b
[

literature (e.g. [13]) for matrices which are generated from rectangular grids. For these

matrices, ALG4 may be greatly simplified. Iiowever, for matrices which are generated

"
"l
Y from irregular grids. the choice of P 2P, does not seem useful because. even though the
N
- execution of ALGA4 is rather costly, only few of the terms u; ; * u;; in the inner loop are
non-zeroes, thus causing only few updates in the entries of A . In this case, the SSOR split-
y ting of A may be used.
' 3 SSOR splitting as incomplete factorization.
) If the update set P is taken to be the empty set ®, then it is easy to see that the fac-
b tors U4 and D 4 resulting from ALG4 are given by i
X Do=4 RSN
Wt
= A-1 ! .',_.‘
: U¢ AT F ::.'.-":-Q
1 S ™
Also, if the off-diagonal elements of A are shifted by w before factorization. then the) —
s e
X resulting factors are given by ey
- CADA
) _ g
3 Dy=A (6.a) E;.:_,_,—_‘
Usg=wA™'F (6.b) —
o
\ Hence, the SIC (®.w) preconditioning matrix is : j
X ¥
b S8
i} - -l
Y
A NN
», -
b :

RN
¥ RPN

TN Yy
o
c AR

-11-

4
A
('
L™

s
Z
’

My=(I +0A'FY Al +0 A F))
=(A+wFY AV(A+wF)

[s
Y
.
f)
. A,

?}

[/

?r
77

Which is equal to the SSOR preconditioning matrix. up to a scalar factor of w(2—w). This

P

A WY
o

scalar factor does not have any effect from the point of view of the PCCG method.

Diagonal update Cholesky factorization.

oo
Consider non-shifted incomplete factorization. We may envision a linear scale on ";t:{: N
'.\:n.:.:
which the preconditioners obtained from ALG4 are laid according to the size of the update ‘;-;::'_',«
set P (see Fig 2). Clearly, the exact factorization IC(P,) corresponding 10 .
T
P, ={(i.j):i.j=1...n}, and the SSOR splitting JC (P) are laid at the two ends of the e
ERGAE S
e
scale, with IC (P,) somewhere in between. The results of Manteuffel [11] for M matrices :-:-::‘_{:-
ey
show that, if P, & P,, then the IC(P,)/PCCG may not outperform IC (P,)/PCCG. In v A
D "Q‘" v
‘P S
other words. the performance of the /C/PCCG improves when we move to the right on the :”
.'14 v,
P
scale of Fig 2. e
:Pi.’,..\._;‘
[-:.44'
e
® P, P, P, size of the " -
. — : » update set AN
SSOR diagonal standard exact e
update ic Cholesky L
box
AN
Fig 2 - The spectrum of incomplete Cholesky factorizations A '.:(
. '- e
':"!.:"-'
The diagonal update factorization is the factorization obtained from ALG4 with the ‘:.:};;
update set given by P; = {(i .i):i=1...n}. That is. only the diagonals of A are updated _*-T
N
in ALG4. If we shift the matrix A by w before applying ALG4, then it is easy to see that ,‘"'E:%
) the factors D, and U, resulting from the factorization are given by m
s = ing) ol
2e A S
U =w(A)'F NG
At
X i s
where, by ALG4, the elements A, , i =1.....,n of the diagonal matrix A are given by e,

I
?
.-'/i“

~.
"
1]
)
B
ap el

:a

o
)
"".
s w A

IR R R A PR LR CR LR RN S N T TP L BN P U S UL T S UL L AU S T UL T O PO g st A A
'.".-J' '}‘*".-}‘h- Y .“ Sl o Cr (‘./ (.‘l'.f.."- ‘.-' -...’.' » -": - s"\' K'.Q.Il- \" > J-. $*.' “-f.~ \"'\,- f\.ﬂ.-\ -‘{\"" "\‘

-
DRSS

LML LAY

2.4

) {t}—}. &

AR A

e S

i

- -~
B as a0 2 LS

-‘-nttt e

o\ 4

OO
2

-12 - — e
TN
b
The equations which express the solution of upper triangular linear systems are simi- z‘:’-‘
Lot
4
lar to the above equations, with the division replaced by a multiplication. Assuming that 'l-’?.j;
the execution of a vector divide operation is at most four times slower than a vector multi- :'_:i
s
)
ply (on the CRAY the ratio is found to be 2.5 for vectors of length 6400), then it is clear :ﬁ 5
that the cost of computing A is at most equal to the cost of one PCCG iteration. Given A. %}ﬁ
e
the SIC (P, @) preconditioning matrix is :::-\.‘
i
S
My;=(+w0A'FY AU +wAF) (8) e
el
In addition 1o being easy to compute, both SSOR and SIC (P, .w) preconditioners have S
?.-I“
ASKE
an advantage over factorizations with update sets larger than P,. Namely, they may lead :'h::?»::
NN
to reduced computational work in each PCCG iteration. More specifically. each iteration in ,S:ﬁ:
ALG1 requires, in addition to O (n) operations, both the matrix/vector multiplication Ap, f}"{ﬁ
- J\..
_.n'. 0y
and the solution of two triangular systems in step 3. However, for SSOR and SIC (P, .w) _«.';:::
X
ol
preconditioners, ALG1 may be rewritten such that it requires only the solution of two tri- :\"'1]’
-L'T‘i
angular systems, thus reducing the work per iteration by a factor of, almost 2. For exam- e
ple. if the SSOR matrix (7) is used in ALG1, and the following substitution is made .':.-:
.':\':\
A}
H=(A+wF)T A(A+wF)7, (9 gl
e
then. it is possible to rewrite the algorithm such that it only involves, besides O (n) opera- .-;.:?;
tions. the multiplication of a vector p by H (see [6] for details). From (9) and (5), this .}_
.:,...\
multiplication may be computed as follows: e
\::\\
— N,
Hp=?(v +(LA+F)T (p + 22 Av)) (10) o
w @ wal
. . \'.
1 ¥
where v = (—(;A + F)™1 p. That is the multiplication H p may be performed by solving r‘s
two triangular systems. ::f:: '..'
o
The same argument applies to the SIC (P, .w) matrix (8), which has the same form as e
- .
(7). except that A is replaced by A. In this case, the multiplication Hp may be obtained -—-:
from equation (10) with A replaced by A. :j".:‘.»_i
:'.::._'_
L
-
PN
s
PR I B -.:; o N .:» :'{'{2_'.:_';.;.'-‘.-_' \;‘\:‘-_-'._-..-,'-_\'.:. ;\ i.- -(-_ \; " .'\:.'_-‘_‘ -_‘.\3.-_‘ \:\\“ RSN '_\:F\;.-_' -.'.-_"-_"-.‘;-

‘v Y () n - «® AR AN T A Ak b A o Pt % - e g, 9, & R
: N
'Y
) -13 - L—\ﬁ
[-
. . .)
> Given that P, 2&. then according to [11], IC (P,)/PCCG is expected to outperform Y\ o
i . qu
': SSOR /PCCG for M matrices. The examples considered in Section 5 suggest that, in gen-
fe
. eral, IC (P,)/PCCG is at least as efficient as the SSOR /PCCG .]

4. MULTICOLOR NUMBERING SCHEMES

XX XA

NG

3 e
The major difficulty in the vectorization of the IC/PCCG method concerns the recur- ‘..i.)-4
NG
N sive nature of the solution of triangular linear systems. In order to overcome this xf_:‘;;
> ey
N difficulty, many multicolor numbering schemes have been suggested (9. 17. 21, 22] for rec- -j-f‘::
N . '-!‘-m
tangular grids. Their goal is to obtain a coefficient matrix A which may be partitioned into 7
e o
\ submatrices A; ;. i.j=1.....p. for some p, such that 4, ,.{=1....p, are diagonal matrices. pj:}::)
N e
\ IAGErY
Py This goal is achieved by applying an algorithm which has the following form: r‘_:.:-f"
’: -) 4
< ALGS : A Global Multicolor Numbering Scheme \ﬁ?.j
o e
" ORCs
e 1) Assign to each node in the grid a color from a set of p colors such that neighbor- el
.’ #_:-"':-'
, el
N ing nodes have different colors. Chose p to be as small as possible. ::_-:i

:: 2) For each color ¢ =1....,p, number all the nodes which have color ¢ in a column-

'.II
z

wise sequential order.

N n
The above numbering scheme is global in the sense that all the nodes which have the ~ R
,) -::.r;‘_:f:
Y same color are numbered consecutively. Although global numbering schemes produce RN
g N
- * N ‘.'I
;, matrices with large zero stretch (approximately 2 where n is the number of nodes in the :'i
P ey
L grid). experience [9, 17, 22] shows that these schemes worsen the condition of the matrix, ’2‘:'; ~7
“~
ol ot
v, . . . NS
. thus slowing down the convergence of the IC/PCCG method. In this section, we suggest a ,-.::"
. RS
"
o numbering scheme which compromises between the zero stretch of the matrix and the con- s
|
, vergence properties of the PCCG. We first introduce the scheme for rectangular grids. .r:.-:.
Poetg
$ n';-“:-
ko "\"\"
. s . s LA 4
4.1. Column-wise multicolor numbering of rectangular grids NN
1 b
Let T be an upper (or a lower) triangular matrix given in striped form. It was shown =T
A '/:'
> in Section 2 that the larger the zero stretch of 7', the more efficient is the solution of Tx =b
[\
W o
f\ <
N - d
Lo
L .':.'\'.
% Lol A
- n it - . 8 Ly, - - ~ S S LN N T e N Lt T LT T T N T T e T N

. O
1 AT

] .“ ." :' :’ :'.F“

-14 -

on vector computers. However, the advantage of having large zero stretches when the
IC /PCCG is applied to the solution of linear systems should be put in its proper prospec-

tive. More specifically, it is important to note the following:

1) the zero stretch does not affect the matrix/vector multiplication, the inner products com-

putation or the vector addition operations in ALG1.

2) the solution of a triangular linear system includes data movement operations (e.g. scatter
and gather in ALG3). These operations are slower than vector arithmetic operations on

existing vector computers. and hence they dominate the execution time of the solution.

3) the advantage of having long vectors is relatively limited in data movement operations
compared to arithmetic operations. More specifically, the execution time of a vector arith-
metic operation on a pipeline computer is usually specified by 7, +87,. where 7, is a vector
setup time, 7, is pipe unit time and § is the vector length. Usually. 7, is much larger that

Tp

which makes it very advantageous to use long vectors. For example. a multiply/add
vector operation on the CRAY X-MP consumes 70 and 170 u-sec. for § = 640 and 6400,
respectively. On the other hand. using long vector in data movement operations is less
advantageous because the pipe unit time for vector data movement operations is relatively
large. and depends on the distribution of data in memory. For example. a specific gather

operation on the CRAY X-MP consumes 40 and 370 u-sec for 8 = 640 and 6400, respec-

tively. The corresponding times for a scatter operation are 90 and 410 u-sec., respectively.

Given the above facts. our main goal in the vectorization of the IC/PCCG method
should be to increase the zero stretch in the matrices to a point which prevents the recursive
solution of triangular systems from dominating the entire process. However, once the exe-
cution time of ALG1 is not dominated by the time for step 3. any further increase of the
zero stretches will have a relatively limited effect on the execution time of the /C /PCCG
iteration. For instance. when step 3 consumes only one fourth of the execution time of

ALG]1. the doubling of the speed of step 3 speeds up the entire algorithm by less than 1.15.

. fﬁ

. "
""'- ~

sae, -, DR v e et m"
P f\I,-'?-'." o ._‘f. « \v'$f*l.

Lo et "\"-.".‘."-.',-‘ et ‘r\'-'\f'"." W AT

i

e :I‘
f.'t": .
[

.
P4

Pl

-\»."
.
2 e

)
.0 ’

.I
' v
1
i '(J.,J P4

.

)
.'\“‘

- l' A-' " *
£ .8 2 L K3
v et O
A A
e

Are

.' %‘l ,. '.J
AL
e R I

AN
3‘.;‘,:# [

<,
!
>y

.

%
L)

/ n“f‘
S0
]

[} " {
W

6558

2,
Y
LA

Y

4}!‘

>
2

oo Ju |

o "l" ."' —‘:
F I] l“'.’"] ‘

A
L N
",'(".‘.
S5

&% S

0., “‘

A o .
A

PR R

“~
LY
.‘\

™ N /:
- -15 - .

. e

iy The above discussion suggests that a numbering scheme which produces "reasonably 'ﬁ*

A‘__
";':‘:
od &

LJ . o
conditioned” matrices with "reasonable” zero stretches may be better than a numbering N
: scheme which produces "ill conditioned" matrices with very large zero stretches. The —r g
L ¢ -q:'. .".
. g
) column-wise multicoloring scheme belongs to the former class. It is described. for an r Xm ,-_'.':\'.,-
\ A\
N Aoy
2 rectangular grid, by the following algorithm: ¢ :'t"'
L
3 ALG6 : A Column-Wise Multicolor Numbering Scheme A
‘ P
hd AP
5 1) Assign to each node in the grid a color from a set of ¢ colors such that neighbor- ".:_‘::_:
. et
a .’-"'-"
- ing nodes that are in the same column have different colors. Chose ¢ 10 be as s
YA Y
K. small as possible. DA
K. e
’ L
2) FOR j=1,---.m DO Ry
) AN
) E':“: a¥
= FOR each color ¢ =1....¢4. number, sequentially. the nodes in column j k.
. ..‘-': "
> which have color c. o f;:-::‘_‘:
2 ‘ SO
NN
N It may be shown that ALG6 produces matrices with zero stretches equal to L. while ';.f-::w‘
‘. q F.“l“.»-
d b vy
: ALGS produces matrices with zero stretches L™ The minimal values of g and p for ,a:-:_";\.
-

2 ’ o
. different discretization stencils are given in Table 1, where FD s denotes the 5-point finite ':ﬁ";
, oA

~Ove
difference discretization, and FE,, FE, FE, and FE, denote finite element discretizations ¢ _
, ;._~\ D
% with 3-node triangles. 4-node rectangles, 6-node triangles and 9-node rectangles, respec- ‘{:‘
. VX
; tively. \:...:\'
- WS O
FDs | FE; | FE, | FE, | FE,
. p for global schemes 2 3 4 6 9
. g for column-wise schemes 2 2 2 3 3
b Table 1 - minimal number of colors in multicoloring schemes
¢ 4.2. Numbering pierced rectangular grids
4
] Pierced rectangular grids (see Fig 3) are defined in [15] to be rectangular grids from
Al
!' which some subrectangles are removed. This type of grids is useful because any irregular -
3 domain may be covered by a pierced rectangular grid. or by a grid which is isomorphic 10 a ;:“r‘.‘_
. .:-.:',,\
’ DA
t,\,’.‘
:.P
P S PSR L L ST SR SRR R S AT A o
BT NS5 DTN NN R SIS

!
g
E
i
é

RN AN

pierced rectangular grid.

3 14 23 30 1] [Y] 1 34 A4
] bl 2 Ad A 35 [1] ?
4 i}) 21 9 3 [} 31 32 b3

o 17 i 3 2 4‘4* a4 0 e

™ n AL 4 3 sy 1

L lq 22 %
. Ii! 2 | 40

|} 10 [[33
Fig 3 - A pierced rectangular grid numbered with a
2-color column-wise scheme.

Let O be a rectangular grid which contains ny nodes numbered by the integers 1
according to some numbering scheme, and let {) be a grid which is obtained by piercing Q
and which contains n nodes. A renumbering of the nodes which are in {} may then be
defined by a function v that assigns 1o each node i . wWhich is in both Q and). a unique
number v(i). 1<»(i)$n o. This renumbering is said to be deduced from the numbering of
Q if v is derived as follows

ALG?7 : Numbering Pierced Rectangular Grids

1=0
FORi =1, --.ny DO
IFnodei isin @ THEN{I=0+1:v(i)=1}
ELSE { v(i) = 1 (undefined) }

The upper (or lower) zero stretch of the symmetric matrix generated from the pierced

rectangular grid Q is then given by

A = min{Iv(i)=v(j)! ;i and j are neighboring nodes in)} (11)

-\"' PSR
- ~'

ASRY »

relelelelelels

e
N

;

S

e
Xg

L

S
OO,
ROA SR
. v L7

SRR N
.
,'

S "

"
|

()

kY

\ k]
s
[}

2

s}';"
eI
o 5

a’

o

~
VN

0 A
»

T

‘-.'

-
.,
4

16 48 2"0 o' Lon’d [" " - 2 ' ® gt 906 06 R p s pab Y - al. aka gl Y ¥ v

-17- -

The specific value of A in (11) depends on the shape of and on the numbering S
scheme. However, due to the regularity of global and column-wise multicolor numberings. :zfl
it is possible, in both schemes. to establish upper and lower bounds for A. In the remainder 1%
of this section, we will find such bounds for the FE, and FE discretizations. Similar RGN
bounds may be derived for other discretizations. We start by deriving bounds on A for % '2

column wise multicolor numberings.

Theorem 1: If either FE, or FEq discretization is used, and a column-wise multicoloring

vy

fofa

scheme is applied with ¢ =2 or 3, respectively, then

27, LA A A vy YT TR I s TR ATAT N B F

S

AERET," T,

S

Ce min — 1

> S AScey,

where ce o, is the minimum number of elements in any column of elements in Q.

Proof: see the appendix.

ICYONANANRNS ¢ 77 71 7ERW 7007

AL

>
-«

For global coloring schemes, the bounds on A may be given in terms of the total

number of nodes n o in @. For this, we first estimate the number of nodes in & which are

Y

.

N

S
.r"‘.‘n::

colored by any particular color.

l"
)
Y,
X

'y

Lemma 1: Let the n 3 nodes in a pierced rectangular domain be numbered by first using

e '.-f "
o0

a global multicolor scheme to number the smallest rectangular domain Q which enclose Q, [T
and then deducing the node numbers in using ALG7. If FE 4 or FE, discretizations are :.:::::::‘_
s
used with p =4 and 9, respectively, then for any particular I, 1</ £p, the number. n'; , of e
nodes given the color ! is bound by :’ RN
I
2 .}'-:‘\'
‘_l—" na $n’n S 2 2nQ. (12) :j‘.::\n
2Vp -1 Vp +1 NN

e

il BEA

LY

A

i~
i~
™~

T1ERTo

« R

Proof: see the appendix

In Figure 4. we color some specific rectangular grids to show that the bounds in

Lemma 1 are tight (the numbers in Fig 4 refer to colors). More specifically, for FE,. the

grid in Figure 4(a) gives n § =L, gandn =%n q. Similarly, for FEq.n § =

9 n g in Fig-

1
25

ure 4(b), and n § =%n o in Figure 4(c). Clearly, the grids in Fig 4 are rectangular grids.

which are special cases of pierced rectangular grids.

2_s5 8 2 5
147 1
sl 7| 1] e
1_3 1 3] 6] 9 3
' 3] 6l 9l 3l 6
: 2[4] 2 2| _s| 8 2
. 2| sl sl 21 s 3 :
13 1 et
1 4 7 a2
1 s 7 1 4 ! j. ::'
‘ (a) (b) (c) e
: Figure 4 - Tightening the bounds of Lemma 1 R
: AN

N
N

The following theorem uses Lemma 1 to bound the zero streich of the matrix resulting

g from the finite element discretization.
s Theorem 2: Given the hypothesis of Lemma 1, the zero stretch of the matrix resulting from
i the finite element discretization is bounded by
_l_zn —1<€a¢ #2[+p) (13)
Y720 R Vel I i

Proof: see the appendix.

Given a pierced rectangular grid {}. the above bounds may be used for the apriori esti-
mation of the zero streich which result from specific numbering schemes. The experiments
of Section 5 show that the convergence rate of the PCCG method is inversely related to the

zero stretch, A, of the matrix. and that beyond a specific value of A, the reduction in the

Ta"eTaTe A WEEY Y Y Y Y WS

execution time of each PCCG iteration does not offset the increase in the number of itera-

1N

. tions.” In this context., apriori estimates of A may help in chosing the best numbering RN
N RS
N scheme for Q. et

N Ao

v r

_! 4.3. A multicolor numbering for irregular grids
S .
- In finite element analysis. it is often useful to change the density of the discretization a0
i\ v
LY

b points among the different regions of the domain. This is especially advantageous if a rough

g estimate of the solution is known or if an adaptive solution technique is applied. In both

"4

:: cases, it is preferable to increase the density of the discretization points in the regions where '-

¥l e -
- -~ @
l '.r-\vT
;:v "»'.‘.':\
N ;_ .'. Ta
A e e A L L o g L T L T U RS A RN
ISV NT 35 DT S BT W AT IS ST I N

="y ¥ v v & 8§ S Y ¥y v T 7.

e aVEEEDV W T, M yV"a"aT WY E P ¥ 2RV _N™ ¥ E.V,"."STaTA Ry ¢ ¥ v .77

o .

-19-

the solution is known to (or is found to) change rapidly. This desirable variation in density

may not, usually, be accomplished without the use of irregular grids.

All previous schemes for numbering irregular grids aimed at the reduction of the
band-width and the profile of the resuiting matrices. This is particularly useful if direct
methods are used for the solution of the linear systems resulting from the grids. However,
as we explained in Section 2, if iterative solution methods are applied and vector computers
are used. then the efficiency of the solution process is determined by the zero stretch of the
matrix. In this section, we describe a multicoloring technique which aims at increasing the

zero stretch of the matrix.

Let G be the graph corresponding to a given irregular grid. That is, the nodes in G
correspond to the nodes in the grid, and any two neighboring nodes in the grid are connected
by an edge in G. Guided by the global multicoloring scheme for rectangular grids. our goal
is to partition G into disjoint subsets of nodes G!, [=1.....,p, such that 1) p is as small as
possible. 2) no two node in any partition G/ are neighbors, and 3) the variation in the size
of the partitions G'. [=1.....p is minimal. Giver such a partitioning, it is possible to
number the nodes in each subset consecutively. However, this does not guarantee a large
zero stretch if the numbering of the nodes within each partition G' is done arbitrarily. For
example, if the node numbered first in G/ is connected to the node numbered last in G/ 71,
then the zero stretch is equal to unity. In other words, the relation between the nodes in

G' and G/~ should be taken into consideration in the numbering process.
The numbering scheme which we suggest consists of the following four steps:

1) The generation of a level structure {V,,V,, - - - }, such that the nodes in each level V,
are not connected to the nodes in levels V.., w >u+1 or w <u—1. In other words.

nodes in V, may only be connected to nodes in V, _jand V, ..

2) For each level V, . the partitioning of the nodes in V, into the minimum number of
independent sets V,!, V2, - - - such that the nodes in each V,* are independent. That is

no two nodes in V,* are connected by an edge in G .

I

»
A

oy

AARAA
b3

Yy
B
L AA

B

.l
A

y

-

n
P

SoE
55
&"':".".l-

Py
o,
» / "‘

LY

h
)

¢

5

144

'lé".
3,

Y

)
(o
i
1

[/

5‘-’1."

T o
)
..ff_n’

V g

[

iy

|

W
A

Yy !

5

NONCRENLN
s

hY

Ny
%)
s o',

Yy

'.'.ﬁf
l" l,

Ty e)

«e "
n.‘ l,.! "‘- ". X
s s

--«-
U.D' » W
vl ’
o

.

e .
Y TR
[) 8

s '
P A
“.'.

." /.-0'
Y48

v s:«"i. ;
0

f“/".“.f.
PRs f‘
0

)
v

LA

v, e,

,-“I.C
'n"’ -
L

»

o A

>

-
S
‘e

I SRR T oA A a o T S
P A AT e S

RS A S LT STEEEDLY Y RSN

LT AR S ALY R~

Ly

i]

S oty

A% 4 %5550

A AN

-

P XA

'
~.¢
3
Y
3
~
-,
|

-20-

3) The formation of the partitions G', and
4) The actual numbering of the nodes.

In order to generate the level structure, we start from an arbitrary initial level V.
and we proceed in a way very similar to the Cuthill-Mckee Algorithm [4]. More
specifically, given a level V,, we construct the next level V, ., by including in it any node
which is connected to a node in V, and which is not in any previous level. A criteria which

should guide the choice of V, is the desire to have Z v, I = Z IV,,. where 1V, | is

u =even u =odd

the number of nodes in V,. For example. if we denote by CN, the u”* column of nodes in
a pierced rectangular domain, then for FE , discretization, {CN ;.CN,....} is a level structure

in which the ratioof }, ICN,! 10 3, ICN, | may be proven to be larger than 0.5 and

u =odd u =even
smaller than 2 (see proof of Lemma 1 in the appendix).

Given a specific level. V, , the optimal generation of the independent sets V,}.V,2, - -
is known to be NP complete. However. a simple algorithm which may be used for this gen-
eration proceeds by considering the nodes in V, in any given order. For each nodei. i is
added to the first set V,» which does not contain a node that is a neighbor to i . If this con-
dition is not satisfied for any of the sets constructed so far, then, a new set which contains
only node i is created. Let s, be the number of independent sets constructed for V, . and

let 1V, M, 1€ASs, be the number of nodes in the set V,*.

For pierced rectangular domains and FE 4 discretizations. the number of independent
subsets is constant for any level u. Namely s, =2. However, for general grids. s, may not

be constant. In this case. we define s ,,,, = max{s, }. Note that. for 5, <A<s ,,. the sets V'
u
are empty.

Given the independent sets, the partitions G1.G?, - - - may be constructed by the com-
bination of the appropriate independent sets such that the variation in the size of the

different partitions is as small as possible. For this, the following algorithm may be applied

PR
-
3
S e fn gnl g

.:z-_, 7

n

AR L, 3
‘:""‘l’\’*"
rLl Ll

LS A

2 Jin W |
]
o,
s
4

s

4

.l
e
s
s

..
v e

RN
v, S’

TS T WOTEEE T TWTe T T WM Tammees T a T . 2 2 R RS, % E e & TR - -

g™ T EoTEESL TeTe s 2 8 " nAmmw v

-21-

ALGS : Creation of independent patritions
Forl=1, -2 5 p,,. initialize G! to the empty set,
Foru=135.- - Do
For A=1, - - - ,5 5. Do
Chose the partition G/, 1 € € s5_,, which contains, so far, the minimum
number of nodes (break ties arbitrarily). and set G! =G/ |J VA
Foru=2.46, - - Do
For A=1. -5 Do
Chose the partition G', s, <1 £ 2 5., Which contains, so far, the
minimum number of nodes (break ties arbitrarily). and set
Gl =¢G! U VX
After obtaining the 2s ,, partitions, we may then start the actual numbering of the
nodes. For this. we consider the partitions in the order G}, G2, ..., and within each parti-
tion, G/, we number the nodes sequentially such that if Vf and V,* are two subsets in G'

with v >u, then the nodes in V,}' are numbered before the nodes in V .

Clearly. ALGS8 guarantees that the sizes of the partitions G/, [=1, - - - .5 ., does not
differ by more than the size of the largest subset among all subsets V,*, A=1.....5 ...
©=1.2... The same applies to the partitions G, [=5 p,,+1. - - - .25 1.,. However, no rela-
tion may be established between the size of two partitions G/ and G*, I €5 ., and A> 5 ;.
without an explicit assumption about the size of each level V, with respect to the following
level V, ;. If an assumption of this kind is made, then it may be possible, following a rea-
soning similar to that of Theorem 2, to find a lower bound on the value of the zero stretch
of the matrix resulting from this multicolor numbering scheme. We will not pursue this

issue any further.

We illustrate our numbering scheme by applying it to the grid of Figure 5. In this
figure, a level structure {V . - .V,} is indicated by bold dashed lines. and within each

level V, . the nodes which are assigned to the subsets V,!, V.2 and V,} are marked by the

et ‘.\. ..‘_'-._'.' ':.\" ~° \'\\'- '..“- . .-\- .“..'- .'~¢.'...'. .
Lﬂmmtx’:\h;sls{h\"\.\.\h';.{hlfm. Taa

Wk
)
oA A NG N
L S AL
s, -.".gl‘rﬂ

s

v

N
NN

A
LR

LS

'l'l"l"l’ [N -.V-n"-
0 P ;
YNNI TN

XX

‘. \(5-' N
r a5
.

Y
hY

..’ﬁ,.}
» L}

4§ %
PR
hY

panndt S PR
e
[

e -G A 0 A AP AE A AR A AT A A AR AR

-

. .
"..-‘.

22 -

- W
|
o

hJ
A

svmbols @, T and A, respectively. The application of ALGS, then. results in the following

) J..

partitiors:

‘o
'):I_J
PR

»

A

Y
NNy

N n
07

v

PR A,
A <

R &
‘a0 h
T
&4

Jary

¢

which leads to the numbering shown. It is easy to check that the zero stretch resulting from
this numbering is A = 8. How good is this result compared with the maximum possible zero
stretch for this specific grid?, and is there any numbering scheme which is not NP complete,
and which will produce the maximum zero stretch?. We do not know the answer to these

questions, but some preliminary results lead us to believe that the answer to the second

question is negative.

Finally. we should note that the above numbering scheme is global in the sense that

all the nodes which are given a particular color are numbered consecutively. A level-wise

numbering scheme analogous to the column-wise scheme of Section 4.1 may also be applied. AN
';-":\.-\:
However. the construction of the subsets V,},V,2, - - - in this case should be done such that 20N

AR CNE 0 A JUE it it e e S Jutetier it b iyt st b i D e A LA A SR SR DA A S A A DA A A R A i DS S o
: A
P \{‘-
- -23- sl
. 7
ﬁ: the size of these subsets is as uniform as possible. _‘(:
b -,
‘s o
I e
5 5. NUMERICAL RESULTS 0%
o
In order to evaluate the diagonal update technique of Section 3, and to test the ,v'?\::
‘Fad
. . . . N
column-wise multicolor numbering scheme of Section 4. we implemented the PCCG method :N
e
!
. i
on the CRAY X-MP using the stripe structure approach of Section 2. The implementation
Al
) allows for the solution of general symmetric sparse systems and provides for no precondi-
N tioning, SSOR, SIC (P, w) or SIC (P, .w) preconditioning. The PCCG iteration is stopped
- when the 2-norm of both the residual and the step size fall below 1075
A
: :' The linear systems used in our experiments are generated by using a modified version
g
A of the finite element code of [2]. The modification incorporates the stripe data structure and
o
K provides options for 1) the automatic specification of pierced rectangular domains and grids. o
kS
: . -."\'
5;:' 2) the choice of the numbering scheme (one color, column-wise multicolor or global mul- e
S
Ye , , : o
t_. ticolor), and 3) the application of finite difference discretization. B,
~ o . 4 o
- In this section. we report the results obtained for the following three problems: O
o
- Problem 1: N
y =
- A
Vu —u =0 on D
-\'ni
~;._ u=1+xy on gD “e
lf. '.‘-.-l
- . | e
-::.: where D is the unit square. For this problem we consider both FD and FE, discretiza-
. >
i3 P

tions. For FD, we consider many grid sizes and we report in Table 2 the number of itera-

4

<
W I
\I \ -
__ tions / and the execution time 7 (in seconds) for the PCCG corresponding to the numbering o
. N
N ‘ . . . =
g schemes discussed in Section 4. We also report / and T for the basic (non-preconditioned) o

~ -
conjugate gradient method. The execution times are omitted for the 64x64 grid because e

:-, they are relatively small and thus inconclusive. Note that the giobal two color numbering

:;-. scheme is the usual red/black numbering scheme. .
‘ - .-‘
N INE :
: The results in Table 2 are obtained by fixing the shift factor, w. (over relaxation fac- T
» N
- tor) to unity. In order to observe the effect of changing w. we report in Table 3, the results :
- Ly
. '.:-‘.
0 Al
d LSAY
. AAN
L’ RS
o J T P S S S P TP P N N ¥ P T P L S s
K \.'\J'q -'_-1, Tus ”, J_; ._l‘,.. _.f.... \-'\J',‘J_ f,\(._- g ,..__-'_‘a \a,\a.- o “

- -~ e AR -
X ik)3 }-f. N

1t o -‘II.".-'\‘r '

S XN

FAAARS

vl

(NN

R

-24 -

grid precond. one global column-wise | no prec.
size method color 2-colors 2-colors 1-color |
oo |8 T8 [|w |
100100 | 26p,) | oorda | 1s3/2s7 | 1297260 | 0122
150X150 | 1 p,) | 136/140 | 231/ms | 103/ | 4397556
200200 | 3605,y | Ts1/3as | 308/203 | 2ssnss | 9861131

Table 2 - The number of PCCG iterations and the execution time (in seconds)
for Problem 1 with FD g discretization (w=1).

grid precond. one global column-wise.
color 2-colors 2-colors
size method /T Wopr /T Wopr I/T Wop;
200200 SSOR 51/10.1 | 1.95 | 308/20.3 | 1.0 | 253/179 | 1.15
SIC(P; w) | 53/10.2 | 1.23 | 308/20.3 | 1.0 | 253/179 | 1.13

Table 3 - The number of PCCG iterations (I) and the execution time (T) for

Problem 1 with FD s and the optimal choice of w.

precond. one global column-wise
method color 4-colors 2-colors
/T (3] /T w /T w
SSOR 120/19.6 1.0 144/11.6 | 1.0 | 134/7.8 1.0
Ic(p,) 112/18.4 1.0 143/11.7 | 1.0 | 127/7.6 1.0
I/T Wope /T Wy, I/T Wopr |
SSOR 37/6.3 1.95 | 144/11.6 | 1.0 | 94/5.5 1.62
SIC(P; w) | 38/6.5 1.55 | 144/11.7 | 1.0 | 85/5.3 1.43
no prec. 1/T =273/4.89

Table 4 - Results for problem 1 with FE, on a 150X150 grid.

Vy Vu=0

u=x-—-y

Problem 2: (PROB 29 in [18])

on D
on QD

for the SSOR/PCCG and the SIC (P; .w)/PCCG methods with w=w

W=w,,, in one table for the FE , discretization.

opr » the optimal value of

@ which gave the fastest convergence. In Table 4, we combine the results for w=1 and

where D is the unit square. The results of FE,. FE 5 and FE, discretizations for this prob-

lem are given in Tables 5 and 6. At this point, we would like to note that the running times

e
;f?
N
Ry
‘J\:.-
L

,
;-
>,

;

A4
T

."..
R
LML

)
#‘. ‘.

LS
‘r?‘

L]
LR
g
por W N

v
/’

o ating

P

.\‘ut

AR

g e Ay

R Te e T 0 By BN
PLEPI LA i
Lg

(4

.'.:,
A4
[

)
L

WAV S S

.._
. 3 :
3 R -
<, ‘
’ PP s
DA R
. . LR N

[P
»
LY

-',A,

7
'

YA k
1R 17

.
a’

[)
e,

Sy, Y
e

Sphe AT
n oy
N,

&
s
g

7t

* t,*" 'f'f "’ ','."‘1
N S A ot
_IL,A.’\)J \"ﬁ' % ‘

A

-25-
: reported for this and the previous problems seem high compared to the running times which
i are reported in other papers (e.g. [24.25]). This should not be surprising because our

implementation is designed for general sparse matrices, and hence does not assume any spe-
cial form for the stripes. Clearly, an implementation which is designed specifically for

matrices generated from rectangular grids would use the fact that all the stripes are parallel

T

L
x

Ad

é

E’

rd

¥

'TJ'\."\;

o -

RN
i

“y .'i
ANy Y
"‘l“"x .

A Y
A2

.,
<
¢

.

h]
o
)

to the diagonal of the matrix, thus eliminating the need for the time consuming gather and S
| e
' scatter operations. :-E::;:'_j
- "l
R
' precond. one global column-wise ALY
method color 4-colors 2-colors i~z
I/T w 1I/T w I/T w Sl
SSOR 136/22.7 | 1.0 | 171/13.5 [1.0 | 140/8.5 | 1.0 RO
IC(P;) 126/21.1 | 1.0 | 170/13.5 | 1.0 | 132/8.1 | 1.0 RSN
IC(P,) 96/17.4 | 1.0 | 166/16.7 | 10 | 109/8.1 | 1.0 ROAN
/T Wop /T Wop, /T Wop; | ;‘ o
¥ SSOR 39/6.8 195 | 171/13.5 | 1.0 | 98/5.8 1.6 BN
. SIC(P; .w) | 39/6.9 1.55 | 170/13.5 | 1.0 | 86/5.2 2N
|SIC(P, w) | 31/1.5 12 | 166/16.7 | 1.0 | 71/5.7 1.2 RN
no prec. I/T = 647/12.8 .';::::';
e
Table 5 - Results for Problem 2 with FE 4, on a 150X150 grid] ’j
NN
.'. Cd
FE, FE, N0
precond. one global column-wise one column-wise ?:Q;:
method color 4-colors 2-colors color 3-colors e
1 | o |1 [o |1 w UT w VT | w Een
SSOR 108 | 1.0 [450 | 1.0 | 120 | 1.0 | 109/19.3 | 1.0 | 114/9.9 | 1.0 :-r‘;.'-::
Ic(p;) |[92 |10 1432] 10 [113 ! 1.0 § 97/173 | 1.0 | 103/9.1 | 1.0 N
I Wopr 1 Wy I Wopr /T Wopr /T Wy, | ~_".:-'_'_::
SSOR |[35 [1.9 [135] 13 [109 | 13 || 35/6.4 [195] 86/75 | 1.6 Jaiv
SIC(P; w) || 32 1.3 1122 | 1.2 | 105 1.2 46/8.4 1.4 80/7.1 1.3 —
no prec. I =565 I/T = 556/12.1 AR
A
Table 6 - Results for Problem 2 with FE, and FE4 on a 99x99 grid. o
AL
A
Problem 3: (PROB 26 in [18]) -
ey
o .‘b"
; VQ+x2)P Y u =60x on D ot
8 : "ot
D u=0 on §D ::5:’ :
N AN
TN
where D is the pierced rectangular domain of Figure 3. The result of the FE 4 discretization tall
I-*\A
v . o>
d for this problem using a 100X200 pierced rectangular grid is given in Table 7. ::'_3\‘
; el
;

o o I I] '}\‘.‘_.\-.\
N, &, LA PCAC N4 L AR Ny

e IR A)

LA AN NN

R

RSO N P N I,
P AN S AN

--\"‘ o YN

.
LA

R P S I PR

c“ .-’
-,
s
~l
A
&
.,

E YY)
[]

[
"\)

,Zﬂ"'
L %)
PP 4

'y

¥

.l

Y 54 3 oy v
“‘-{‘-{.l' - ~ 4’; L"-L"‘(V

. !
N /‘2"};‘1 LA

)

X

LA A4
(2 “l 'ﬂ >-l‘ .\

Y

.ﬂ C‘. l.. l~l

.
o

Ay

- alle
reLLlS

o A
W h
LICICTE P P

OO
LY __‘i:l

£

S

precond. one global column-wise
method color 4~colors 2-colors
/T w 1I/T w I/T @
SSOR 90/10.8 1.0 112/6.5 1.0 106/5.0 | 1.0
IC(p;) 69/8.4 1.0 | 108/6.4 | 1.0 | 100/4.8 | 1.0
Ic(P) 69/9.0 1.0 113/8.3 1.0 104/58 | 1.0
/T Wop, /T Wop, I/T Wop, |
SSOR 29/3.6 1.9 109/6.2 1.2 102/4.7 | 1.2
SIC(P;.w) | 29/3.8 | 1.22 | 106/6.1 | 1.15 | 95/4.5 1.2
SIC(P, .w) | 30/4.4 1.2 | 107/8.1 | 1.25 | 86/4.8 1.3
no prec. I/T = 533/7.26

[NEY
D
"'-
v;:

y
ﬂl

~
"

N\
O
N

»’
"
’

N
w

>
-
l' »

]
;’».'
ol
",

o
.
ha
A
2.
-“:
ot
P4
v
9
I'..
7
&
) P
19
s

4
(s
5

ﬂ
"
%
>~
e
"
.-
7]
4,
.

~

.‘
4

Table 7 - Results for Problem 3 with FE,

By studying the above results, we may note the following:

1) For large grid sizes. the column-wise numbering scheme is consistently better than the
global numbering scheme. In fact, it seems that the global scheme may be recommended
(on the CRAY) only if the grid size is relatively small. More specifically, if the zero stretch
for the column-wise scheme is smaller than 64. Clearly, for such small problems, the

power of a supercomputer is not needed.

2) If no adaptive procedure is incorporated in the PCCG solver to choose the optimal w, then
the natural choice is w=1. In this case, it is clear from the results that the use of the
IC(P,;) preconditioner instead of the SSOR preconditioner reduces the number of PCCG
iterations for both the one color scheme and the column-wise coloring scheme. The advan-

tage of the IC (P,) preconditioner is clear, given that the cost of the computation of the

IC (P,) matrix is equal to the cost of one PCCG iteration.

3) The IC(P,) preconditioner may reduce the number of iterations over the IC(P,)
preconditioner. However, the IC (P,)/PCCG runs usually faster than the /C (P,)/PCCG
because it costs too much to compute the /C (P,) factorization. Here, we would like to note
that our implementation does not take advantage of the technique of Eisenstat [6]. which is
described at the end of Section 3. to reduce the work in SSOR/PCCG and IC (P,)/PCCG .
Clearly, the use of this technique will reduce further the execution time of these methods

compared to the IC (P,)/PCCG .

S R S A
n \’.. A ‘.p

e

[

K
-
A
WA
)
A%

¢
<

Grfe Ny
WY

47

ﬁ 'l‘.-t' N

LA AP AP SRV S
DA A A A)
.III /4 J- A,I _l l.(l_,'.

3
+

¢
')

ANYYTD
A AL
SAN L

‘5

4

-/ -{
. .":

.
,r";-,r"’/'
PP

! ”
-__: .'l‘ ‘

o % "

RPN I SR PPN E
e e e
LTI I I ARV SRL A

r

RRATCA

» !

-

i =

o i e e

5

e

BB, Y. 7.,

s 'S Pl

AT, (%5

|

<4 °p

v

-27-

4) If a one-color numbering scheme is applied. then it is possible to reduce the number of
iterations in the SSOR/PCCG drasticly by using the optimum value of w. This drastic
reduction offsets the disadvantage of having a unit zero stretch. In other words, if an adap-
tive strategy may be used to chose the optimum w, then the one-color numbering scheme

seems to be the most appropriate scheme to apply.

5) For problems that are well conditioned, as for example problem 1, the fastest way to
solve the problem is the non-preconditioned CG method. However, this is not the case for

problems 2 and 3 which are ill conditioned.

one | col-wise | col-wise | global global
color | 3-colors | 2-colors | 4-colors | 2-colors
number of SSOR /PCCG iterations 163 187 197 204 231
number of IC (P,)/PCCG iterations | 136 165 193 199 231
the zero stretch A 1 50 74 5624 11175

ARG RN

Table 8 - The effect of A on the solution of Problem 1 with FD s discretization
on a 150x150 grid (w=1).

6) There seem to be an inverse relation between the value of the zero stretch and the con-
vergence rate of the PCCG. In order to be more specific. we consider the FD 5 discretization
of Problem 1. and in addition to the numbering schemes reported in Table 2, we use a 3-
color, column-wise scheme, and a 4-color global scheme. The results which we report in

Table 8 confirm this inverse relation.

Finally. we would like to note that only rectangular and pierced rectangular domains
were chosen in the experiments because, first, we did not have a means for the automatic
generation of large irregular grids, and second. the numbering algorithm of Section 4.3 is. to
our knowledge, the first algorithm which aims at increasing the zero stretch for general
matrices. Hence, its performance may only be compared to an algorithm which produces

the maximum zero stretch. We believe that such an algorithm is NP complete.

., AT L NS P AT A LIPS I I T T S ettt ot
D95 SR v T P g KA LN VA A A R SR A

l~. .\

-

hY

T T
Ao I e

NI T NN TV NIRRT Y

TN

-

PR

R
VOLA, »

233
" %’l .’.
)

i

l’ !..
.

SRR
M

e,
A
I

R VY

'.‘
AP

ANy
NN N
fqlaa

s

s

X

R

DO
D)
LA

NN
AR

)

»
'
.

F4

o

" 0
P

[y 4

DU 4

4
,‘- ‘s

'l'l .

AE ARG

Ay
o

., .

L
ey

WY
h)
(]
.
a

vl

;.‘,\.".'»‘a
AN

ALK LY
XA P,

Y
A
- I‘

S N A L L A R LS
1 PRI AR S
A% 2L RG0S 05 500 G505 4%

-28 -

APPENDIX

-Proof of Theorem 1 : Let i and j be two nodes in some element ¢ in Q, and let [,
1<! <q. be the color given to i and [, be the color given to j, where [, =l +1 if 1€/ <q.
and [=1 if I =¢. Note that either 1) i and j lie in the same column of nodes.CN, . in Q or
2)i lies in CN, and j lies in the following column of nodes, namely CN, ,;. Let also CE.
be a column of elements in Q@ which contains element e, and let ce,. be the number of ele-

ments in CE,, .

From ALG6 and ALG?7, it is clear that the number of nodes which are numbered
between nodes i and j. namely v(j)—v(i)+1, is equal to the sum of 1) the number of
nodes with color ! which are above node i (including i) in column CN, , and 2) the number
of nodes with color [, which are below node j (including j) in column CN, or CN,,,.

whichever applies.

Given that at most two elements in the same column may share a single node, and that
for any specific color, every element should contain a node of that color, we may conclude
that »(j)=v(i)+1 should be larger than. or equal to, the sum of 1) half the number of ele-
ments in CE, above, and including, element e, and 2) half the number of elements in CE..

below, and including, element e. In other words,

ce, +1
2

v(j)=v@)+12

But A = min{¥(j)—v(i)}, where e may be in any column in Q. Hence
e

which gives the lower bound.

In order to establish the upper bound on A, we note that v(j)—u(i)—1 is equal to the
sum of nodes of color [above node i and the nodes of color !, below node j (not including

i and j). But, each element in © may contain at most one node of any given color. Then

v(j)—v(i)—1 S ce, —1

Y Sa e e a e
AN SN

FIFTIIFTIETRTETRETY TG TE AR CR TRIL T L

«

P d

4

“»
>,
25

i

%
EIOANE
,","}_, v

TSN
l:""
L AR

O

o}
AL

LR |
wh

" ".l..
Tl

L ',._'..". .'

e
Sl

L4
-
v g

é
2

A
A4

3 4
l‘ "
.‘~.~l

N
L4

- P
b »';':".’:": .,‘v.‘\ ‘~
PR AN

s
LN

i

,IIDOAOJa

o e

. * 2t
R RAR

™ A
S
)

.
'y

2 A
’)
oo

LI
e e " e
0.0
O

x5

4

e

SM ISP
'e ‘2 I.‘.l'- -
[A

N

w, [.J.f '.l"’ <,
SRy

"1

S]
’e
L YA Y

;
4.7

YN

\

A ' PR A iRl &

[N
.

vk

b

ol Aol

DY) AR

U]

XA

’,
’,
s

', LIPS J

IR0

EIEN AIRE R

and the upper bound follows directly. O

Proof of Lemma 1: Let CN, be the u** column of nodes in Q and let cn, be the number of
nodes in this column. In the global multicolor numbering scheme, the colors]\/;,_ are,
first, used to color the nodes in CN | GV =0,1.2..... such that any two neighboring nodes
in a column are given different colors. Then. the colors \/; +1...., 2\/; are used to color the
nodes in CN,, . v=012... and so on. Thus, if the given color [satisfies
(k=1)Vp <1 €kVp . for somek,1<k €Vp . then the number of nodes in Q@ which are

given the color [, namely n’, , is obtained from

nlﬂ = Ozl an{ +\-\/; (14)

where cn/ is the number of nodes which are given the color ! in column CN, .

In order to estimate each term in (14), we consider a particular column of nodes CN, .
where u =k +v Vp , for some v, and we let L =(k —1)Vp . Clearly, the colors used to color
the nodes in CN, are A=L +1.,....L +\/;. We also define a clique in CN, as a subset of
nodes within CN, :such that any two nodes in this subset are neighbors. Note that the
nodes in CN, which lie on a vertical side of an element form a clique. Let clg, be the

number of such cliques in CN,. Given that any particular node in CN, may be in at most

two cliques, we obtain
clg, 2 2en} A=L+1,--- L+Vp (15.a)

Also. the coloring scheme is such that any clique may contain at most one node of any par-

ticular color. This gives
clg, €en) A=L+1,- - L+Vp (15.b)
From (15.a) and (15.b), we get, for the given color [,
cn! € 2en) A=L+1, - .L+Jp

If we write the above inequality \/;—1 times with A=L +1. - L +\/;, A#!. sum these

inequalities, and then add 2cn/! 1o both sides of the result, we get

- ,: ‘:.-_:.-,:.-{r,'f.'(‘f.;a,;a__.-\,'.-\.-,".-\".-,'.-,..:._.-__ .
) . Ay . -

2
s

2,

AT

.
XAz
L] ' - ’

2
L)

q z
s ‘
AN

o,

Fl i

M

A

AR R

B

) YA o

SHSNANS

[Wl N o N .

. .’ Yol ol el g afatetta

525

-

-30-

L+vp
(Vp +Den! €2 cn) =2ecen, (16)
A=L :

Similarly. from (15.a) and (15.b) we may obtain
cn/ ?%cn,,")\=L+1.---,L+\/;
which leads to
\/_ 1 > 1
(Vp —5)cnu Z 5 o Ga7n

Equation (16) and (17) may now be combined into

cn, Sen! € cn
2vp -1 I/
which, together with (14) gives
1 < L < 2
S en,, .o Snly § —/— e, ,, (18)
2o o1 L, e ShR ST B T

Finally, we need to relate the sum in (18) to the total number of nodes ia Q. Instead
of dealing with complex formulas. we treat each of the cases FE, and FE 4 separately. For
FE ,, any column of nodes, CN, . in Q) is enclosed between two consecutive columns of ele-

ments. This implies that cn, € cn, _y+cn, 4. Thus

Y en, €2 Y cn, (19)

u =odd u Seven

Noting that), e¢n, + J, cn, =n g, we may use (19) to obtain
=odd

u u =even

%—nns p> cnu$%n9 (20)

u =even

The same bounds (20) may be obtained for Y cn,. which proves the following for FE,

u =odd
and p =4:
—1—n9$ cn“‘_‘/—ﬁ-—z—nn (21
2Vp ~1 V=01, ? Jp+1

(N A AN

e . e
PRGNS I S AYARELLRCHRYY

..
"1\.:‘/" Il
Gl vt
SO A A

a

sl“l

W
P,

;

o
.

:
L)
']

RO
I’ A".l ,,’
oy

1]
i)

[

ﬂ

-'.'I.
LRy
)

>0
-y

-

t'.

[\
)

Zok
l.' l~
LS

-

s

._.
W
f

d

‘e

-'l"l’. .
s % % % R

ll"'
(s

._
(4

”
I.‘ "
' XA

NLIN

YA S AL YRR T, A

- THEEET TR W T W r—————— —

» T

T+ T oHE w8 ¥ B BN .T e v

T3 A F AR ."=-":"a"a"+s7 + WD

e "I AT I s™ T X AW 1R TEA L ELTEE I

YV IWRY.

For FE, discretizations, a similar procedure, starting from ¢n, Scn, 4 +cn,_; and

cn, Scn,_; +cn, ,,. may be used to prove (21) for the case p =9. The result (12), then.

follows directly from (21) and (18). O

Proof of Theorem 2: From the definition of A, there exist two node i and j in an element
e such that ¥(j)=v(i)=A. Let CE, be the column of elements which contains e, and let [
and [+1 be the colors of nodes i and ;. respectively. The proof proceeds by the construc-
tion of two pierced rectangular domains Q, and Q, which overlap at element e. Namely,
), consists of element e, the elements in CN, above e, and the elements in the following
columns CN, ,;.CN, ,,. - - -. The grid Q, consists of element e, the elements in CN, below

e. and the elements in the previous columns CNy, - -* .CN,_;. Let ng and ng, be the

numbers of nodes in 2, and Q. respectively, and note that n o +n o =n o+p.

From the global numbering scheme, it is clear that the difference »(j)—v(i)+1 is equal

to the number of nodes in {; which have the color [, namely n[n,- plus the number of

nodes in Q, which have the color / +1, namely !} . That is

v(j)—v(i)+ =nly + 10§ (23)

But. O, and Q, are pierced rectangular domains. and thus, ny, and n'g}} obey the bound

of Lemma 1. The application of these bounds on (23) gives

R
P

..' .' .
PO
EAAESEN

2
[n91+nnz] Sv(j)—-vi)+1 <

2
{n a, + nnz].

v

1
2Vp -1

2
Vp +1

Finally, (13) results by using the definition of A and n Q=n'nl+n a,~?-0

LR T T T e LI A U RIS SN IR S B Ta¥ T LIS 2P .
"."'I\{'-" < \J'..c'q‘ 4"'4'.'-’*. >, J.‘ 5('- "._f.~¢ \-’ sl‘~n' o, \-F«..-'\" "f\

References

1.

10.

11.

O. Axelsson, A Survey of Vectorizable Preconditioning Method for Large Scale Finite
Element Matrix Problems,” Tech. Report CNA-190, Center for Numerical Analysis,

The University of Texas at Austin, 1984.

E. Becker. G. Carey. and J. T. Oden, Finite Elements, An Introduction, Volume 1,

Prentice-Hall, Englewood Cliffs, New Jersey. 1981.

P. Concus. G. Golub, and G. Meurant. “Block Preconditioning for the Conjugate Gra-

dient Methods,” SIAM J. on Sci. and Stat. Computing, vol. 6, pp. 220-252, 1985.

E. Cuthill and J. Mckee, “Reducing the Bandwidth of Sparse Symmetric Matrices,”

Proc. of the ACM National Conf, New-York. pp. 157-172. 1969 . ,:;E‘.
J. Dongarra, F. Gustavson, and A. Karp. “Implementing Linear Algebra Algorithms '\':.:
for Dense Matrices on a Vector Pipeline Machine,” SJAM Review, vol. 26, pp. 91-112. \x‘is
S. Eisenstat, “Efficient Implementation of a class of Preconditioned Conjugate Gradient 'z,;\
Methods.” SIAM J. on Sci. and Stat. Computing, vol. 2, no. 1, pp. 1-4, 1981. y
I. Gustafsson and A Class of First Order Factorization Methods. BIT, vol. 18, pp.

142-156, 1978.

A. Hageman and D Young, Applied Iterative Methods. Academic Press, New York,

1981.

D. Kincaid, T. Oppe. and D. Young, "Vector Computations for Sparse Linear Sys-

tems,” Tech. Report CNA-189. Center for Numerical Analysis, The University of

Texas at Austin, 1984. SR

N. Madsen, G. Rodrigue, and J. Karush. “"Matrix Multiplication by Diagonals on a

Vector/Parallel Processor,”” Information Processing Letters. vol. 5. no. 2, pp. 41-45,

June 1976.

T. Manteuffel, “An Incomplete Factorization Technique for Positive Definite Linear ::::::::.:;
R

Systems,” Mathematics of Computation. vol. 34-150, pp. 673-697. April 1980. _}:"::j
_.\:’\ .

W
“
s

AEN "2 8 4 4% 2 E NN & L A4 " % WE-T.Te = o

eTRTAT T STHIRE A S THEEE A B L

' s

YA

P EEACC IR C T T ELECT]W Paae"a"c"a"a"CWW.

-l

e ey
P ta¥a

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

-33-

J. A. Meijerink and H. van der Vorst, “An Iterative Solution Method for Linear Sys-
tems of which the Coefficient Matrix is Symmetric M-Matrix.”” Mathematics of Com-

putation, vol. 31, no. 137, pp. 148-162, 1977.

J. A. Meijerink and H. van der Vorst, “"Guidelines for the usage of Incomplete Decom-
positions in Solving Sets of Linear Equations as They Occur in Practical Problems,” J.

of Computational Physics, vol. 44, pp. 134-155, 1981.

R. Melhem. “"Parallel Solution of Linear Systems with Striped Sparse Matrices.” Tech.

Report. ICMA-86-91 , January 1986. To Appear in Parallel Computing

R. Methem, “A study of the Stripe Structure of Finite Element Stiffness Matrices.”

Tech. Report ICMA-86-92. 1986. To appear in SIAM J. on Numerical Analysis.

G. Meurant, “"The Block Preconditioned Conjugate Gradient Method on Vector Com-

puters,” BIT, vol. 24, pp. 623-633.

E. Poole and J. Ortega, “Multicolor ICCG Methods for Vector Computers,” Applied

Math. Report RM-86-06. University of Virginia, 1986.

J. Rice., E. Houstis, and W. Dyksen, “A Population of Linear Second Order Elliptic
Partial Differential Equations on Rectangular domains: Parts 1 and 2, Math. Comp.,

vol. 36. pp. 475-484. 1981.

J. Rice and R. Boisvert, in Solving Elliptic Problems with Ellpack, Springer Verlag,

1984.

Y. Saad. “Practical Use of Polynomial Preconditionings for the Conjugate Gradient

Method,” SIAM J. on Sci. and Stat. Computing, vol. 6. no. 4. pp. 865-881. 1985.

Y. Saad and M. Schultz, “Parallel Implementations of Preconditioned Conjugate Gra-
dient Methods.”” Tech. Report YALEU/DCS/RR425,, Dept. of Computer Science. Yale

University, Oct. 1985.

R. Schreiber and W. Tang, "Vectorizing the Conjugate Gradient Method.” Proc. of the

Symposium on the CYBER 205 Applications, Fort Collins. CO.. 1982.

L T T N e N ISP N L S
LA N N ECPC A A A NN R AR RO S AL

. ‘A te 4,

oo
teeld

PPy
NS
z
. g
£s

o

ARG
R Ir.rT.
R

o ¢ N ’

L

»
)

e ;": «
l"l.

' -34- ;

23. H. van der Vorst, “A vectorizable Variant of some ICCG Methods.” SIAM J. on Sci. '.-:'~:"

and Star. Computing., vol. 3. no. 3. pp. 350-356, 1982. S

24. H. van der Vorst. "The Performance of FORTRAN Implementations for Precondi- Y

tioned Conjugate Gradients on Vector Computers,” Parallel Computing. vol. 3, pp. 49- .

58. 1986. 553

\ 25. D. Young. T. Oppe. D. Kincaid, and L. Hayes. “On the use of Vector Computers for e
Solving Large Sparse Linear Systems.” Tech. Report CNA-199, Center for Numerical

Analysis, The University of Texas at Austin, May 1985.

(ks

l-'-
. "'l
L

X!
At

«

A b
TRy
o,
)

A
a
,

.' ~

P AN

- & & B ¥ SFTWEAS B O @ @ B & EERRSY e =
.
v
P
»

T

e

h

}

¢

.

!

J

{

]

.

.

N

. .

.

]

|

»

]

f

!

i

| -

v T aq
RS

: RN

| S
N s Mttt a P et TR RIS R R N2 T T o o e R T e N e N U N L N e L L UL I A A
'”-’1’ R S S LY e Gt R N L ¢ Y A SR, O S VA A R O RS AN

"

Y

s

i 3

"

BT e Y Y Y YV

I P v, 8

Py . NN

AR DR RS ey

P
SARCRLEIY T2

- N ..
Bt

LA
A

-'
rata’r

.

\

